
CS 186
Fall 2022 Transactions and Concurrency II
1 Introduction
In the last note, we introduced the concept of isolation as one of the ACID properties. Let’s
revisit our definition here:

• Isolation: Execution of each Xact is isolated from that of others. In reality, the DBMS will
interleave actions of many Xacts and not execute each in order of one after the other. The
DBMS will ensure that each Xact executes as if it ran by itself.

This note will go into details on how the DBMS is able to interleave the actions of many transactions,
while guaranteeing isolation.

2 Two Phase Locking

What are locks, and why are they useful? Locks are basically what allows a transaction to read
and write data. For example, if Transaction T1 is reading data from resource A, then it needs to
make sure no other transaction is modifying resource A at the same time. So a transaction that
wants to read data will ask for a Shared (S) lock on the appropriate resource, and a transaction
that wants to write data will ask for an Exclusive (X) lock on the appropriate resource. Only one
transaction may hold an exclusive lock on a resource, but many transactions can hold a shared
lock on data. Two phase locking (2PL) is a scheme that ensures the database uses conflict
serializable schedules. The two rules for 2PL are:

• Transactions must acquire a S (shared) lock before reading, and an X (exclusive) lock before
writing.

• Transactions cannot acquire new locks after releasing any locks – this is the key to enforcing
serializability through locking!

Two Phase Locking guarantees conflict serializability. When a committing transaction has reached
the end of its acquisition phase, lets call this the “lock point”. At this point, it has everything that
it needs locked. Any conflicting transactions either started the release phase before this point or are
blocked waiting for this transaction. So the visibility of actions of two conflicting transactions can

CS 186, Fall 2022, Course Notes 1 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II
be ordered by their lock points. The order of these lock points gives us an equivalent serial schedule!

The problem with this is that it does not prevent cascading aborts. For example,

• T1 updates resource A and then releases the lock on A.

• T2 reads from A.

• T1 aborts.

• In this case, T2 must also abort because it read an uncommitted value of A.

To solve this, we will use Strict Two Phase Locking. Strict 2PL is the same as 2PL, except all
locks get released together when the transaction completes.

3 Lock Management
Now we know what locks are used for and the types of locks. We will take a look at how the Lock
Manager1 manages these lock and unlock (or acquire and release) requests and how it decides when
to grant the lock.

The LM maintains a hash table, keyed on names of the resources being locked. Each entry contains
a granted set (a set of granted locks/the transactions holding the locks for each resource), lock
type (S or X or types we haven’t yet introduced), and a wait queue (queue of lock requests that
cannot yet be satisfied because they conflict with the locks that have already been granted). See
the following graphic:

1We will refer to the Lock Manager as LM sometimes.

CS 186, Fall 2022, Course Notes 2 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II
When a lock request arrives, the Lock Manager checks if any Xact in the Granted Set or in the
Wait Queue want a conflicting lock. If so, the requester gets put into the Wait Queue. If not, then
the requester is granted the lock and put into the Granted Set.

In addition, Xacts can request a lock upgrade: this is when a Xact with shared lock can request to
upgrade to exclusive. The Lock Manager will add this upgrade request at the front of the queue.

CS 186, Fall 2022, Course Notes 3 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II
Here is some pseudocode for how to process the queue; note that it doesn’t explicitly go over what
to do in cases of promotion etc, but it’s a good overview nevertheless.

If queue skipping is not allowed, here is how to process the queue

H = set of held locks on A

Q = queue of lock requests for A

def request(lock_request):

if Q is empty and lock_request is compatible with all locks in H:

grant(lock_request)

else:

addToQueue(lock_request)

def release_procedure(lock_to_release):

release(lock_to_release)

for lock_request in Q: # iterate through the lock requests in order

if lock_request is compatible with all locks in H:

grant(lock_request) # grant the lock, updating the held set

else:

return

Note that this implementation does not allow queue skipping. When a request arrives under a
queue skipping implementation, we first check if you can grant the lock based on what locks are held
on the resource; if the lock cannot be granted, then put it at the back of the queue. When a lock is
released and the queue is processed, grant any locks that are compatible with what is currently held.

For an example of queue skipping and pseudocode, see the appendix. It relies on you understand-
ing multigranulariy locking however, so make sure to read section 7 first to understand the example.

CS 186, Fall 2022, Course Notes 4 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II
4 Deadlock

We now have a lock manager that will put requesters into the Wait Queue if there are conflicting
locks. But what happens if T1 and T2 both hold S locks on a resource and they both try upgrade
to X? T1 will wait for T2 to release the S lock so that it can get an X lock while T2 will wait for
T1 to release the S it can get an X lock. At this point, neither transaction will be able to get the
X lock because they’re waiting on each other! This is called a deadlock, a cycle of Xacts waiting
for locks to be released by each other.

4.1 Avoidance

One way we can get around deadlocks is by trying to avoid getting into a deadlock. We will assign
the Xact’s priority by its age: now - start time. If Ti wants a lock that Tj holds, we have two
options:2

• Wait-Die: If Ti has higher priority, Ti waits for Tj; else Ti aborts

• Wound-Wait: If Ti has higher priority, Tj aborts; else Ti waits

Please read the diagram below like a ternary operator (C/C++/java/javascript)

2Important Detail: If a transaction re-starts, make sure it gets its original timestamp.

CS 186, Fall 2022, Course Notes 5 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II
4.2 Detection

Although we avoid deadlocks in the method above, we end up aborting many transactions! We can
instead try detecting deadlocks and then if we find a deadlock, we abort one of the transactions in
the deadlock so the other transactions can continue.

We will detect deadlocks by creating and maintaining a “waits-for” graph. This graph will
have one node per Xact and an edge from Ti to Tj if:

• Tj holds a lock on resource X

• Ti tries to acquire a lock on resource X, but Tj must release its lock on resource X before Ti

can acquire its desired lock.

For example, the following graph has a edge from T1 to T2 because after T2 acquires a lock on B,
T1 tries to acquire a conflicting lock on it. Thus, T1 waits for T2.

If a transaction Ti is waiting on another transaction Tj (i.e. there is an edge from Ti to Tj), then
Ti cannot acquire any new locks. Therefore, a transaction Tk will not wait for Ti on a resource X
unless Ti had acquired a conflicting lock on X before it began waiting for Tj .

Consider the example below, while keeping in mind that only lock acquisitions are shown in sched-
ule, not lock releases.

CS 186, Fall 2022, Course Notes 6 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II

There is an edge from T2 to T1 because T1 holds an X lock, when T2 requests a conflicting S lock
on resource A. Once T2 waits for T1 to finish with resource A, none of T2’s operations can proceed
until it is removed from the wait queue. This is why T3 does not wait for T2 when acquiring an S
lock on B, since T2 was never actually able to acquire an X lock on B, as it was still waiting on T1.
Similarly, when T3 goes to acquire an X lock on A, it need only wait for T1 since at that point in
time the only transaction with a conflicting lock on A is T1. Note that at that point both T2 and
T3 will be in the wait queue for resource A.

We will periodically check for cycles in a graph, which indicate a deadlock. If a cycle is found, we
will ”shoot” a Xact in the cycle and abort it to break the cycle. An interesting empirical fact is
that most deadlock cycles are small (2-3 transactions).

Important note: A ”waits-for” graph is used for cycle detection and is different from the conflict
dependency graph we discussed earlier (in the previous note) which was used to figure out if a
transaction schedule was serializable. As a reminder:

Conflict Dependency Graph: Draw an edge from Ti to Tj iff

• Tj and Ti operate on the same resource, with Ti operation preceding Tj op.

• At least one of Ti and Tj is a write.

• Used to determine conflict serializability

Waits-For Graph: Draw an edge from Ti to Tj iff

• Tj holds a conflicting lock on the resource Ti wants to operate on, meaning Ti must wait for
Tj

• Used for deadlock detection

CS 186, Fall 2022, Course Notes 7 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II
5 Lock Granularity

So now that we understand the concept of locking, we want to figure out what to actually lock.
Do we want to lock the tuple containing the data we wish to write? Or the page? Or the table?
Or maybe even the entire database, so that no transaction can write to this database while we’re
working on it? As you can guess, the decision we make will differ greatly based upon the situation
we find ourselves in.

Let us think of the database system as the tree below:

The top level is the database. The next level is the table, which is followed by the pages of the
table. Finally, the records of the table themselves are the lowest level in the tree.

Remember that when we place a lock on a node, we implicitly lock all of its children as well
(intuitively, think of it like this: if you place a lock on a page, then you’re implicitly placing a lock
on all the records and preventing anyone else from modifying it). So you can see how we’d like to
be able to specify to the database system exactly which level we’d really like to place the lock on.
That’s why multigranularity locking is important; it allows us to place locks at different levels of
the tree.

We will have the following new lock modes:

• IS: Intent to get S lock(s) at finer granularity.

• IX: Intent to get X lock(s) at finer granularity. Note: that two transactions can place an IX
lock on the same resource – they do not directly conflict at that point because they could
place the X lock on two different children! So we leave it up to the database manager to
ensure that they don’t place X locks on the same node later on while allowing two IX locks
on the same resource.

CS 186, Fall 2022, Course Notes 8 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II

• SIX: Like S and IX at the same time. This is useful if we want to prevent any other transaction
from modifying a lower resource but want to allow them to read a lower level. Here, we say
that at this level, I claim a shared lock; now, no other transaction can claim an exclusive lock
on anything in this sub-tree (however, it can possibly claim a shared lock on something that
is not being modified by this transaction–i.e something we won’t place the X lock on. That’s
left for the database system to handle).

Interestingly, note that no other transaction can claim an S lock on the node that has a SIX lock,
because that would place a shared lock on the entire tree by two transactions, and that would
prevent us from modifying anything in this sub-tree. The only lock compatible with SIX is IS.

Here is the compatibility matrix below; interpret the axes as being transaction T1 and trans-
action T2. As an example, consider the entry X, S – this means that it is not possible for T1 to
hold an X lock on a resource while T2 holds an S lock on the same resource. NL stands for no lock.

5.1 Multiple Granularity Locking Protocol

1. Each Xact starts from the root of the hierarchy.

2. To get S or IS lock on a node, must hold IS or IX on parent node.

3. To get X or IX on a node, must hold IX or SIX on parent node.

4. Must release locks in bottom-up order.

5. 2-phase and lock compatibility matrix rules enforced as well

6. Protocol is correct in that it is equivalent to directly setting locks at leaf levels of the hierarchy.

CS 186, Fall 2022, Course Notes 9 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II
6 Practice Problems

1. Is the following schedule possible under 2PL? S means acquiring a shared lock, X means
acquiring an exclusive lock, and U means releasing a lock.

2. Is the above schedule possible under strict 2PL?

3. For the schedule below, which (if any) transactions will wait under a ”wait-die” deadlock
avoidance strategy? The priorities in descending order are: T1, T2, T3, T4.3

4. For the schedule above, which (if any) transactions will wait under a ”wound-wait” deadlock
avoidance strategy? The priorities in descending order are: T1, T2, T3, T4.

5. What does the ”waits-for” graph look like for the above schedule from problem 3? Is there
deadlock?

3Here the priorities were provided explicitly, but if they are not explicit then you should default to its age: now
- start time, as defined in 4.1. For this schedule the default priorities in descending order would be: T1, T2, T4,
T3 (since T4 began before T3).

CS 186, Fall 2022, Course Notes 10 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II

6. For the database system below, which lock modes (including IS, IX, or SIX) on which resources
are necessary to read Pa?

7. For the database system above, which lock modes (including IS, IX, or SIX) held by other
transactions on Pa would prevent us from modifying ra1?

7 Solutions
1. Yes, the schedule is possible under 2PL, because no transaction acquires a lock after it begins

to release locks.

2. No, the schedule is not possible under strict 2PL, because T1 does not release all of its locks
at once. Instead, T3 is able to acquire a lock on A after T1 releases the X lock on A, but
before T1 releases the X lock on C. Therefore, the schedule violates strict 2PL since T3 could
potentially abort under a cascading abort.

3. T1 and T3
TS refers to timestep (the top row in the schedule).
T2 will abort at TS-2 since T2 has lower priority than T1. T3 will wait for T4 at TS-5 since
T3 has higher priority than T4. T1 will wait for T4 at TS-7 since T1 has higher priority than
T4.

4. T2
T2 will wait for T1 at TS-2 since T2 has lower priority than T1. T4 will abort at TS-5 since
T3 has higher priority than T4.

5. There is no deadlock, because there is no cycle in the waits-for graph.

CS 186, Fall 2022, Course Notes 11 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II

There is an edge from T2 to T1 since T2 waits for T1 at TS-2. This means there is no edge
from T2 to T4 at TS-4 since T2 is already waiting for another transaction. There is an edge
from T3 to T4 at TS-5. There is also an edge from T1 to T4 at TS-7.

6. We would need the IS lock mode on DB and T1, and the S lock mode on Pa. This allows us
to read from Pa while restricting other transactions as little as possible.

7. S, SIX, and X lock modes held by other transactions on Pa would prevent us from holding
an X lock on ra1, which is necessary to modify ra1. IX and IS locks would not prevent us, as
the actual X or S locks held by other transactions are not necessarily on ra1.

CS 186, Fall 2022, Course Notes 12 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II
Appendix
We now provide a formal proof for why the presence of a cycle in the waits-for graph is equivalent
to the presence of a deadlock.

We use αj(Ri) to represent the lock request of lock type αj on the resource Ri by transaction Tj .

We use βij(Ri) to represent a lock held of the lock type βij on the resource Ri by transaction Tj .

Definition 1. Deadlock

A deadlock is a sequence of transactions (with no repetitions) T1, . . . , Tk such that:

• for each i ∈ [1, k), Ti is requesting a lock αi(Ri), Ti+1 holds the lock βi,i+1(Ri), and αi and
βi,i+1 are incompatible, and

• Tk is requesting a lock αk(Rk), T1 holds the lock βk,1(Rk), and αk and βk,1 are incompatible.

Definition 2. Waits-for Graph

Let T = {T1, . . . , Tn} be the set of transactions and let Di ⊆ T be defined as follows:

• if Ti is blocked while requesting some lock αi(Ri), then Di is the set of transactions Tj that
hold locks βij(Ri) where αi and βij are incompatible,

• otherwise, Di = ∅.

The waits-for graph is the directed graph G = (V,E) with V = {1, . . . , n} and E = {(i, j) : Tj ∈
Di}.

Theorem. There is a simple cycle in the waits-for graph G ⇐⇒ there is a deadlock.

Proof. Assume there is a simple cycle C = {(i1, i2), . . . , (ik−1, ik), (ik, i1)} ⊆ E.

By definition of the waits-for graph, (i, j) ∈ E ⇐⇒ Tj ∈ Di, or alternatively, that Tj holds a lock
βij(Ri) while Ti is blocked requesting αi(Ri), and αi and βij are incompatible.

Therefore, (ij , ij+1) ∈ C ⊆ E ⇐⇒ Tij+1 holds a lock βijij+1(Rij) while Tij is blocked requesting
αij (Rij), where αij and βijij+1 are incompatible. A similar result holds for (ik, i1).

But this is simply the definition of a deadlock on the transactions Ti1 , . . . , Tik , so we have our
result.

CS 186, Fall 2022, Course Notes 13 Jenny Huang, Lakshya Jain

CS 186
Fall 2022 Transactions and Concurrency II
Queue Skipping
An example of queue skipping is the following: Suppose, on resource A, that T1 holds IS and T2

holds an IX lock. The queue has, in order, the following requests: T3 : X(A), T4 : S(A), T5 : S(A),
and T6 : SIX(A).

Now, let T2 release its lock. Instead of processing the queue in order and stopping when a conflict-
ing lock is requested (which would result in no locks being granted, as T3 is at the front and wants
X(A)), queue skipping processes the queue in order, granting locks one by one whenever compatible.

Here, it would look at T3’s X(A) request, determine that X(A) is incompatible with the IS(A) lock
T1 holds, and move to the next element in the queue. It would then grant T4’s S(A) request, as it
is compatible with the held locks of A, and add T4 : S(A) to the set of locks held on A. It would
then look at T5 : S(A), determine that it is compatible with T4 : S(A) and T1 : IS(A), and grant
it. Finally, it would look at T6 : SIX(A), see that it is incompatible with T4 : S(A) and T5 : S(A)
in the held set, and not grant it as a result.

Here is some pseudocode for processing the queue, but this time with queue skipping:

If queue skipping is allowed, here is how to process the queue

H = set of held locks on A

Q = queue of lock requests for A

def request(lock_request):

if lock_request is compatible with all locks in H:

grant(lock_request)

else:

addToQueue(lock_request)

def release_procedure(lock_to_release):

release(lock_to_release)

for lock_request in Q: # iterate through the lock requests in order

if lock_request is compatible with all locks in H:

grant(lock_request) # grant the lock, updating the held set

CS 186, Fall 2022, Course Notes 14 Jenny Huang, Lakshya Jain

