Hi! Welcome to
61A Discussion :)

We will begin at 5:10!
@55 E) Attendance form and skeleton notes:;
St

cs6la.bencuan.me

Anhounhcements

= Magic The Lambdaing due Friday

Agenda

= Attendance
= Looking ahead
= Scheme Review + WWSD

o Variables, call expressions, special forms,
lambdas, lists

= Scheme code writing practice

Scheme Review

Today’s goals

= Help you feel more confident about Scheme

= Explore similarities (and differences)
between Scheme and Python

= Give you a bunch of examples to reference later

= Do a bunch of list stuff with cons car cdr

General Scheme Tips (now with lists)

= Everything is a list! (except for special forms)

= Scheme lists are in the form:;
(operator operands...)

= So f(x) in python would be (f X) in scheme
o Move all your parentheses to the front

= All manually created lists (list, cons, quote)
become linked lists

o Must use car and cdr to work with them

Scheme Resources

= go.cs6la.org/ben-scheme

= Scheme Specification:
https://cs6la.org/articles/scheme-spec/

= Bullt-In Procedures:
https://cs6la.ora/articles/scheme-builtins/

https://go.cs61a.org/ben-scheme
https://cs61a.org/articles/scheme-spec/
https://cs61a.org/articles/scheme-builtins/

Variables

Variables Scheme Python
Numbers 123 123
Booleans #t, #f True, False
Assignment (define hippo 1) <returns hippo>

hippo = 1 <returns None>

Booleans part 1

Booleans Scheme Python

And (and (+ 1 2) “hi) (1 + 2) and ‘hi’
or (or (x 3 4) ‘(1)) (3 *x 4) or Link(1)
Not (not {—~ 5 6)) not (5 - 6)

Truthy Values

0, (print *hi), #%, (Llist 1),
nil, ‘(), etc.

‘hi*, =1, [3, 5]1; ete.

Falsey Values

#f

0, False, [], None, etc.

Booleans part 2

Null check

(null? duck)

duck 1is None

Type checks

(KTYPE>? x)
<TYPE>: list, boolean, integer,
atom. ..

isinstance(x, <TYPE>)
<TYPE>y str, int, list,
dict.. ..

Even/odd (even? 61) 61 % 2 == 0
(odd? 61) Bl % 2 == 1
Equals (= a b) <NUMBERS ONLY> a==>b
(eq? a b) <NUMS/BOOLS/SYMBOLS> a is b

(equal? a b) <LISTS/PAIRS -
checks if each element is equal>

(not exact equivalence; see
https://cs6la.org/articles/scheme
—builtins/#general for more info)

Functions/Procedures

Functions Scheme Python
Function (define (f x) (+ x 1)) def f(x):
Definitions return x + 1
Lambdas (lambda (elephant) 7) lambda elephant: 7
Higher order (define (f x) def f(x):
functions (define (g y) (+ x vy)) def g(y):
g return x +y
) return g

If and Cond

Control Scheme Python
Statements
If (if (< 4 5) ‘yes ‘no) ‘yes’ if (4 < 5) else ‘no’
OR
if 4 < 5:
return ‘yes’
else:
return ‘no’
Elif/Cond (if (< ab) 1 if a < b:
(if (> ab) 2 3)) return 1
elif a > b:
— (OR" — return 2
(cond else:
((< ab)1l) return 3
((> ab) 2)
(else 3)

Begin and Let

Begin (begin print(‘cs6la’)
(Multi-line (print “cs6la) print(‘is_awesome!’)
expressions) (print ‘is_awesome!)

) <python doesn’t need begin,

just type multiple lines!>

Let (let ((x 1) (y 2)) (lambda x, y: x + y) (1, 2)
(Temporary (+ x vy)
assignment)) <not a 1-1 correlation! let

doesn’t exist in python>

Q2: Virahanka-Fibonacci

Write a function that returns the n -th Virahanka-Fibonacci number.

(define (fib n)
'YOUR-CODE-HERE

)

(expect (fib 10) 55)
(expect (fib 1) 1)

Scheme Lists

List Operations

List Operations
ALL SCHEME LISTS
ARE LINKED LISTS!

Scheme

Python

Create list

(cons first rest)

Link(first, rest)

Get value (car 1st) lst.first
Get rest (cdr 1st) lst.rest
Empty list AL, £ Link.empty

Make long list

(list 1 2 3) OR
‘(1 2 3) OR (quote (1 2 3)) OR
(cons 1 (cons 2 (cons 3 nil)))

Link(1, Link(2, Link(3,
Link.empty)))

Comparing Items

@ =

o Used for numbers only!
= eqv?

o Equivalent to python s
= equal?

o Used for comparing lists

Comparing Items

scm> (define a '(1 2 3))
a

scm> (= a a)

Error

scm> (equal? a '(1 2 3))
fit

scm> (eqv? a '(1 2 3))
#f

scm> (define b a)

b

scm> (eqv? a b)

ft

<- Numbers only!!

<- Not the same object

<- Is the same object

A subtle define difference (bonus)

What is the difference between:

A. (define x (+ 1 2 3))

B. (define (x) (+1 2 3))

List practice (bonus)

Write an expression that selects the value 3 from the list below.

(define s '(5 4 (1 2) 3 7))

LB TG T T T

Hint: how would you do this in python (using linked lists)? What is the scheme equivalent?

List practice pt.2

Q3: List Making
Let's make some Scheme lists. We'll define the same list with list, quote, and cons.

The following list was visualized using the draw feature of code.cs61a.org.

—Pp

—t c | — d | —» O

I I
L4
l e | O

Scheme List Skeleton

Scheme version

(define (f 1lst)
(if (null? 1st)
sBASE CASE

;RECURSIVE CASE
(cons (do stuff to car a)
(f (cdr 1st))

)

Python version

def f(lst):
if lst is Link.empty:
BASE CASE
else:

RECURSIVE CASE
new_first = do stuff to lst.first
return Link(new_first, f(lst.rest))

Q4. List Concatenation

Write a function which takes two lists and concatenates them.

Notice that simply calling (cons a b) would not work because it will create a deep list. Do not call the builtin
procedure append, since it does the same thing as list-concat should do.

(define (list-concat a b) HintS:
'YOUR-CODE-HERE

e Tryitin python first
(linked lists) if stuck!

e Use consto create a
new list each time

)

(expect (list-concat '(1 2 3) '(2 3 4
(expect (list-concat '(3) '(2 10)) (

Q5: Map

Write a function that takes a procedure and applies it to every element in a given list using
your own implementation without using the built-in map function.

(define (map-fn fn lst) Hints:
PRI Use recursion!

 J
e \What happens to (car Ist)?
e \What about (cdr Ist)?

)

(map-fn (lambda (x) (* x x)) '(1 2 3))

expect (1 4 9g)

Q6: Remove

Implement a procedure remove that takes in a list and returns a new list with all instances of
item removed from 1st.You may assume the list will only consist of numbers and will not

have nested lists.

Hint. You might find the built-in filter procedure useful (though it is definitely possible
to complete this question without it).

You can find information about how to use filter in the 61A Scheme builtin

specification!

