
Hi! Welcome to
61A Discussion :)

We will begin at 5:10!
Attendance form and skeleton notes:

cs61a.bencuan.me

Announcements

2

▣ Magic The Lambdaing due Friday

Agenda

3

▣ Attendance

▣ Looking ahead

▣ Scheme Review + WWSD

□ Variables, call expressions, special forms,
lambdas, lists

▣ Scheme code writing practice

Scheme Review

Today’s goals

▣ Help you feel more confident about Scheme

▣ Explore similarities (and differences)
between Scheme and Python

▣ Give you a bunch of examples to reference later

▣ Do a bunch of list stuff with cons car cdr

General Scheme Tips (now with lists)

▣ Everything is a list! (except for special forms)

▣ Scheme lists are in the form:
(operator operands…)

▣ So f(x) in python would be (f x) in scheme
□ Move all your parentheses to the front

▣ All manually created lists (list, cons, quote)
become linked lists
□ Must use car and cdr to work with them

Scheme Resources

▣ go.cs61a.org/ben-scheme

▣ Scheme Specification:
https://cs61a.org/articles/scheme-spec/

▣ Built-In Procedures:
https://cs61a.org/articles/scheme-builtins/

https://go.cs61a.org/ben-scheme
https://cs61a.org/articles/scheme-spec/
https://cs61a.org/articles/scheme-builtins/

Variables

Booleans part 1

Booleans part 2

Functions/Procedures

If and Cond

Begin and Let

Scheme Lists

List Operations

Scheme Python

Create (cons first rest) Link(first, rest)

Get label (car lst) lst.first

Get rest (cdr lst) lst.rest

Empty nil, ‘()

Make long
list

(list 1 2 3)
‘(1 2 3)

Link(1, Link(2,
Link(3)))

Comparing Items

▣ =

□ Used for numbers only!

▣ eqv?

□ Equivalent to python is

▣ equal?

□ Used for comparing lists

Comparing Items

<- Numbers only!!

<- Not the same object

<- Is the same object

A subtle define difference (bonus)

What is the difference between:

A. (define x (+ 1 2 3))

B. (define (x) (+1 2 3))

List practice (bonus)

Hint: how would you do this in python (using linked lists)? What is the scheme equivalent?

List practice pt.2

Scheme List Skeleton

Scheme version

(define (f lst)
(if (null? lst)

;BASE CASE

;RECURSIVE CASE
(cons (do stuff to car a)

 (f (cdr lst))
)

)
)

Python version

def f(lst):
if lst is Link.empty:

BASE CASE

else:
RECURSIVE CASE
new_first = do stuff to lst.first
return Link(new_first, f(lst.rest))

Hints:
● Try it in python first

(linked lists) if stuck!

● Use cons to create a
new list each time

Hints:
● Use recursion!
● What happens to (car lst)?
● What about (cdr lst)?

Hints:
● Use recursion!
● What happens to (car lst)?
● What about (cdr lst)?

