
Hi! Welcome to 
61A Discussion :)

We will begin at 8:10! 
Attendance form and skeleton notes:

cs61a.bencuan.me

Secret word: 

The Invention of Scheme, 1762 (colorized)



Announcements

2

▣ HW6 due tonight

▣ Scheme Part 1 due next Tues.

□ Start early!



Agenda

3

▣ Attendance

▣ Tail Recursion

▣



Tail Recursion



The Vocab

▣ Tail Context: the very last thing that’s done in a 
Scheme expression

▣ Tail Call: calling a function in tail context

▣ Tail Recursion: recursive tail call (in tail context)



Why do we care about tail recursion?



Factorial, tail recursive version



Scheme project EC ideas

▣ Instead of creating a new frame, replace the old frame 
(since you don’t need it anymore)



▣ Strategy:

1. What is the last operation made?
2. Is it a recursive call?
3. Is it normal recursion or tree recursion?



▣ Strategy:

1. What is the last operation made?
2. Is it a recursive call?
3. Is it normal recursion or tree recursion?



Writing tail recursive functions

1. Create a helper function!
a. Parameters: so-far, anything else that changes

2. Base case: return so-far
3. Recursive case: must be in tail context

a. Change so-far
b. Very first operator on the line should be function 

name
4. Remember to call the helper function!



Q2: Sum



Q3: Reverse



Interpreters



The Calculator Example

▣ Goal: let’s write an interpreter that understands 
simple math expressions!
□ (+ 2 2)

□ (- 5)

□ (* (+ 1 2) (+ 2 3))

▣ Understands +, -, *, /, and nested expressions



Pairs

▣ Pairs are literally linked lists!! Only differences:

□ Pair vs Link

□ nil vs Link.empty

□ Pair(1, nil) vs Link(1)

▣ Used to represent Scheme code in Python



Operators and Operands

▣ An operator is the function you are trying to apply 
in Scheme
□ +, list, append…

□ The very first element in a Pair list

▣ An operand is a parameter that is passed into the 
function
□ In (+ 3 5), + is the operator and 3, 5 are both operands



Hint: Pairs have .first and .rest just like a linked list! do not use 
car, cdr, cons…



Q4 Solutions



Q4 Solution 2



Q9



Eval and Apply

▣ Eval rules:

□ Basic elements (numbers, booleans…) - done (base case)

□ Built-in functions (+, -, …) - lookup in OPERATORS

□ Function:

■ Call eval on operator

■ Recursively call eval on all operands

■ Call apply on operator and operands



Example



Counting eval and apply

▣ Entire expression = +1 eval

▣ Operator = +1 eval, +1 apply

▣ Operand = +1 eval

▣ Remember to recursively run eval on nested expressions!

▣ Example: (+ 2 (- 3 4)) → 7 eval, 2 apply

▣ Do not count special forms

□ Example: (and 1 2 3) → 2 eval, 0 apply



▣ Entire expression = +1 eval

▣ Operator = +1 eval, +1 apply

▣ Operand = +1 eval

▣ Remember to recursively run 
eval on nested expressions!

▣ Example: (+ 2 (- 3 4)) → 7 eval, 2 
apply

▣ Do not count special forms

▣ Example: (and 1 2 3) → 2 eval, 0 
apply







New Procedure! (Q5)



New Procedure! (Q5)



New Form! (Q6)

▣ Can we add <=, >=, etc. without changing calc_eval?

▣ What about and, or?



New Form! (Q6)



Define (Q7)


