Hi! Welcome to
61A Discussion :)

We will begin at 5:10!
— Attendance form and skeleton notes:
@'.'.m “”j!:..@

LA 4d
...........

et sl g cs6la.bencuan.me

The Invention of Scheme, 1762 (colorized)

Secret word:

Anhounhcements

= Scheme part 2 and 3 due next Tues
= Scheme part 4 due next next Tues

Agenda

= Attendance
= Programs as Data

What is “programs as data”?

= Code is basically just a bunch of text
= SO, programs are basically just text

= What if we ran the output of code (i.e. text) as if it
were glso code?

= \We can then make code that writes more code

How do we do this in practice?

[m]

[m]

[m]

Everything is a list in Scheme
Scheme (eval) (apply) procedures
Quotes and Quasiquotes

Macros

Eval and Apply

= Eval takes in a list of literals and puts it into the
INterpreter

o (eval (+12)) becomes 3
o (eval (if (=11) 9 -2)) becomes 9

= Apply takes in an operator and a list of operators,
and applies the operator

o (apply + (12)) becomes 3

Quasiquotes

= |f we want to make a list containing both quoted
and ungquoted expressions:

o (define world 10)
o (list ‘hello world) => (hello 10)
o (hello ,world) => (hello 10)

Quasiquotes

B Quote:’
= Quasiquote: °
= Unquote:,

Everything in a quasiquoted expression is quoted
by default!

Q3: Geometric Sequence

Implement the procedure geom, which takes in a nonnegative integer n and a factor f that is an integer greater than 0.
The procedure should create a program as a list that, when passed into the eval procedure, evaluates to the nth
number of the geometric sequence that starts at 1 and has a factor of f. The sequence is zero-indexed.

For example, the geometric sequence starting at 2 is 1, 2, 4, 8, and so on. The expression (geom 5 2) returns a program
as a list. When eval is called on that returned list, it should evaluate to the 5th number of the geometric sequence that
has a factor of 2 (and starts at 1), which is 32.

Step 1: write the code that does the multiplication

Step 2: write a Scheme list representing that code

Step 3: write a function that returns that Scheme list

Q4: Make Or

Implement make-or , which returns, as a list, a program that takes in two expressions and or's them together (applying
short-circuiting rules). However, do this without using the or special form. You may also assume the name v1 doesn't
appear anywhere outside this function. For a quick reminder on the short-circuiting rules for or take a look at slide 18
of Lecture 3 on Control.

The behavior of the or procedure is specified by the following doctests:

scm> (define or-program (make-or '(print 'bork) '(/ 1 0)))

or-program
scm> (eval or-program)

bork

scm> (eval (make-or '(=10) '"(+ 1 2)))
3

Or logic: if exprl is true, what do you return? what if exprl is false?

Q5: Make Make Or

Implement make-or , which returns, as a list, a program that takes in two expressions and or's them together (applying
short-circuiting rules). However, do this without using the or special form. You may also assume the name vi1 doesn't
appear anywhere outside this function. For a quick reminder on the short-circuiting rules for or take a look at slide 18
of Lecture 3 on Control.

The behavior of the or procedure is specified by the following doctests:

scm> (define or-program (make-or '(print 'bork) '(/ 1 0)))

or-program
scm> (eval or-program)

bork

scm> (eval (make-or '(=10) '(+ 1 2)))
3

Hint: write the answer to Q4 as a list!

