
Hi! Welcome to
61A Discussion :)

We will begin at 5:10!
Attendance form and skeleton notes:

cs61a.bencuan.me

Secret word:

The Invention of Scheme, 1762 (colorized)

Announcements

2

▣ Scheme part 2 and 3 due next Tues

▣ Scheme part 4 due next next Tues

Agenda

3

▣ Attendance

▣ Programs as Data

What is “programs as data”?

▣ Code is basically just a bunch of text

▣ So, programs are basically just text

▣ What if we ran the output of code (i.e. text) as if it
were also code?

▣ We can then make code that writes more code

How do we do this in practice?

▣ Everything is a list in Scheme

▣ Scheme (eval) (apply) procedures

▣ Quotes and Quasiquotes

▣ Macros

Eval and Apply

▣ Eval takes in a list of literals and puts it into the
interpreter

□ (eval ‘(+ 1 2)) becomes 3

□ (eval ‘(if (= 1 1) 9 -2)) becomes 9

▣ Apply takes in an operator and a list of operators,
and applies the operator

□ (apply + ‘(1 2)) becomes 3

Q2

Quasiquotes

▣ If we want to make a list containing both quoted
and unquoted expressions:

□ (define world 10)

□ (list ‘hello world) => (hello 10)

□ `(hello ,world) => (hello 10)

Quasiquotes

▣ Quote: ‘

▣ Quasiquote: `

▣ Unquote: ,

Everything in a quasiquoted expression is quoted
by default!

Q1

Q3: Geometric Sequence

Step 1: write the code that does the multiplication

Step 2: write a Scheme list representing that code

Step 3: write a function that returns that Scheme list

Q4: Make Or

Or logic: if expr1 is true, what do you return? what if expr1 is false?

Q5: Make Make Or

Hint: write the answer to Q4 as a list!

