
Hi! Welcome to
61A Discussion :)

We will begin at 5:10!
Attendance: go.cs61a.org/ben-disc

Slides: cs61a.bencuan.me

Announcements

2

▣ Last discussion next week :’(
□ If you have any q’s bring them in!

□ also come to lab

▣ Scheme exists (due Tuesday, 4/26)
□ Accepting project questions during lab!

▣ HW7 due tomorrow night (extended)

Agenda

3

▣ Attendance

▣ Regex

▣ BNF

Some quick regex tips

4

▣ Remember your r strings!

▣ Use regex101.com or equivalent

Using regex in python

▣ https://www.w3schools.com/python/python_regex.asp

▣ tl;dr
import re

 re.search(r”YOUR_REGEX_HERE”, str)

▣ r(aw) string: every character is taken literally (no need to
escape special chars)

□ Remember to put the r in front of the string!!!

https://www.w3schools.com/python/python_regex.asp

warmup!

6

▣ Which of the following expressions will match
the string “Oski”?

□ Oski

□ [Oski]

□ ([oO]ski)*

□ \w{3,6}

□ .?

Q1: Greetings

▣ Follow along: https://regex101.com/r/m0HuiN/1

▣ Match either one OR both of:

□ Lines that start with ‘hi’, ‘hello’, ‘hey’, ‘Hi’, ‘Hello’, ‘Hey’

□ Lines that end with ‘bye’, ‘Bye’, ‘bye!’, ‘Bye!’

https://regex101.com/r/m0HuiN/1

Q1: Greetings

scheme: https:// or http://
domain name: some word characters, a dot (.), more word characters
path: any number of / followed by words followed by (word.word)
anchor: a hashtag followed by any number of words or hyphens

https://regex101.com/r/Vlp5sd/1

BNF
slides adopted from sp21 review session

Why BNF??

● BNF = Backus–Naur form

● Used to define languages in real life
○ https://docs.python.org/3/reference/grammar.

html
○ CS164

● A cool application of trees, regex, interpreters

https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/reference/grammar.html

Terminal Symbols

The atomic expression equivalent in BNF -- the
smallest type of symbol possible.

● Serves as a base case for recursive rules,
● Often defined as regular expressions

INTEGER: /-?\d+/

STRING: /"\w+"/

Non-Terminal Symbols

These symbols can be recursive, and are used to
define any type of syntax that this grammar
might use.
?item: list | INTEGER | STRING

list: "[" item ("," item)* "]"

?item means that, when you visualize the syntax
tree, item will not be included, as it only has one
child and that child can be referred to directly.

Helpful Shorthands

?start: calc_expr

?calc_expr: NUMBER | calc_op

calc_op: "(" OPERATOR
calc_expr* ")"

OPERATOR: "+" | "-" | "*" |
"/"

%ignore /\s+/

%import common.NUMBER

Q3: What does BNF Match?

lark> (+ 1 2)

lark> (+)

lark> (1)

lark> (+ 1 2 3)

lark> (+ 1)

lark> (1 + 2)

lark> (+ 1 (+ 2 3))

lark> (+ 1 - 2 3)

?start: calc_expr

?calc_expr: NUMBER | calc_op

calc_op: "(" OPERATOR
calc_expr* ")"

OPERATOR: "+" | "-" | "*" |
"/"

%ignore /\s+/

%import common.NUMBER

Q3: What does BNF Match?

lark> (+ 1 2)

lark> (+)

lark> (1)

lark> (+ 1 2 3)

lark> (+ 1)

lark> (1 + 2)

lark> (+ 1 (+ 2 3))

lark> (+ 1 - 2 3)

Syntax Trees

numbers 3
numbers 2

numbers 1

%ignore /\s+/

Syntax Trees

%ignore /\s+/

numbers 3
numbers 2

numbers 1

Rules:
● Ignore lines with ?
● Indent each layer
● Single leaf nodes can go on

the same line as their parents

Q4: lambda BNF

Q4: lambda BNF

line: how do you encode a list of words separated by commas?
● for simplicity, you can assume at least 1 word always exists
● remember that the last word doesn’t have a comma after it!

lines: how do you encode a bunch of lines together?
● the newline character is “\n”
● there may or may not be a newline at the end of the file

