Hi! Welcome to

61A Discussion :)

M We will begin at 5:10!
s e i Attendance: go.cs6la.org/ben-disc
-@ E]"“'"@ Slides: cs6la.bencuan.me

e 40 on
.,
La a2
*raerae
Ll i bdd
" sen
LB Bl » a“ts
LI e 2
- ..
-n_".
: @
. W
L
. " -
-
.
.. _see Lo
LI -
. > e "
- "o S0e
L “ts
TEE SReNsesIae
> » e
* L L
L J SEeNE » ..
L L atas
’ L)
" " e ove
-
*"”
- aem

Anhounhcements

= Last discussion next week :'(

o If you have any g's bring them in!

o alsocome to lab

= Scheme exists (due Tuesday, 4/26)

o Accepting project questions during lab!

= HWY7 due tomorrow night (extended)

Agenda

= Attendance
= RegexX
= BNF

Some quick regex tips

= Remember your r strings!

= Use regex10l.com or equivalent

Using regex in python

= https:/www.w3schools.com/python/python_regex.asp

= tl:dr
import re
re.search(r”YOUR_REGEX_HERE”, str)

m r(aw) string: every character is taken literally (no need to
escape special chars)

o Remember to put the r in front of the string!!!

https://www.w3schools.com/python/python_regex.asp

warmup!

= Which of the following expressions will match
the string “Oski"?

o Oski

o [Oski]

o ([oO]ski)*
o \w{3,6}

o .7

Q1: Greetings

Let's say hello to our fellow bears! We've received messages from our new friends at Berkeley, and we want to
determine whether or not these messages are greetings. In this problem, there are two types of greetings - salutations
and valedictions. The first are messages that start with "hi", "hello", or "hey", where the first letter of these words can be
either capitalized or lowercase. The second are messages that end with the word "bye" (capitalized or lowercase),
followed by either an exclamation point, a period, or no punctuation. Write a regular expression that determines whether

a given message is a greeting.

= Follow along: https://regex10l.com/r/mOHuUiN/]
= Match either one OR both of:
o Lines that start with ‘hi’, ‘hello’, ‘hey’, ‘Hi’, ‘Hello’, ‘Hey’

o Lines that end with ‘bye’, ‘Bye’, ‘byel’, ‘Byel’

https://regex101.com/r/m0HuiN/1

Q2: Basic URL Validation
In this problem, we will write a regular expression which matches a URL. URLs look like the following:

s A LU TN O 1) o]

http:// www.example.com: 80 /path/to/myfile.html ?key1=value1&key2=value2 —
Scheme Domain Name Port Path to the file Parameter Anchor

For example, in the link https://cs6la.org/resources/#regular-expressions , we would have:

e Scheme: https

e Domain Name: cs6la.org

e Path to the file: /resources/
e Anchor: #regular-expressions

scheme: https:// or http://

domain name: some word characters, a dot (.), more word characters
path: any number of / followed by words followed by (word.word)
anchor: a hashtag followed by any number of words or hyphens

https://fregex10l.com/r/VIp5sd/1

BNF

slides adopted from sp21 review session

Why BNF??

e BNF = Backus—Naur form

e Used to define languages in real life
o https://docs.python.ora/3/reference/grammar.
html
o CSloe4

e A cool application of trees, regex, interpreters

https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/reference/grammar.html

Terminal Symbols

The atomic expression equivalent in BNF -- the
smallest type of symbol possible.

e Serves as a base case for recursive rules,
e Often defined as regular expressions

INTEGER: /-?2\d+/
STRING: /"\w+"/

Non-Terminal Symbols

These symbols can be recursive, and are used to

define any type of syntax that this grammar
might use.

?l1tem: list | INTEGER | STRING

list: "[" item ("," item)* "]"

?1item means that, when you visualize the syntax
tree, item will not be included, as it only has one
child and that child can be referred to directly.

Helpful Shorthands

EBNF Notation
item*
item+

[item]
item?

Meaning
Zero or more items
One or more items

Optional item

Pure BNF Equivalent
items: | items item
items: item | items item

optitem: | item

Q3: What does BNF Match?

?start: calc expr lark>
lark>
?calc expr: NUMBER | calc op lark>
lark>
calc op: " (" OPERATOR
calc expr* ")" lark>
lark>
OPERATOR: "+" | "=m | mxn lark>
H/H
lark>

$ignore /\s+/

Simport common.NUMBER

(+ 1 2)

(+)

(1)

(+ 1 2 3)
(+ 1)

(1 + 2)

(+ 1 (+ 2 3))
(+ 1 - 2 3)

Q3: What does BNF Match?

?start: calc expr lark> (+ 1 2)
lark> (+)
?calc expr: NUMBER | calc op Fr=te)
lark> (+ 1 2 3)
calc op: " (" OPERATOR
calc_expr* n)n lark> (‘l‘ 1)
Fario—H——23
OPERATOR: "+" | w_mw w4 lark> (+ 1 (+ 2 3))
H/H
I ardeo—+—F—2 3

$ignore /\s+/

Simport common.NUMBER

Syntax Trees

?start: numbers

numbers: numbers "," INTEGER | INTEGER
INTEGER: /-?\d+/
%ignore N\s+/

numbers 3
numbers 2
numbers 1

lark> 1, 2, 3

numbers 3 R

Syntax Trees ' . < >

numbers

7start: numbers

numbers: numbers "," INTEGER | INTEGER
INTEGER: /-?\d+/

%ignore N\s+/

Rules:

e Ignore lines with ?

e Indent each layer

e Single leaf nodes can go on
the same 1line as their parents

Q4: lambda BNF

7?start: lambda_expression

lambda_expression: "lambda " arguments ":" body
arguments: WORD ("," WORD)x*

body: expression

7expression: value | lambda_expression

7value: WORD | NUMBER

%import common.WORD

%import common.NUMBER
%ignore /\s+/

lark> lambda x: 5

lark> lambda x, y: x

lark> lambda x: lambda y: x

Q5: Simple CSV

CSV, which stands for "Comma Separated Values," is a file format to store columnar information. We will write a BNF
grammar for a small subset of CSV, which we will call SimpleCSV.

Create a grammar that reads SimpleCSV, where a file contains rows of words separated by commas. Words are
characters [a-zA-Z] (and may be blank!) Spaces are not allowed in the file.

Here is an example of a 2-line SimpleCSV file:

first,second,third
fourth,fifth,sixth,,eighth

line: how do you encode a list of words separated by commas?
e for simplicity, you can assume at least 1 word always exists
e remember that the last word doesn’t have a comma after it!

lines: how do you encode a bunch of lines together?
e the newline character is “\n"
e there may or may not be a newline at the end of the file

