PROBLEMS
WITH
RECL)BS\ON

AEAEENREES

Hi! Welcome to
Wi 61A Discussion)

RECURSION
?

We will begin at 5:10!
Attendance: go.cs6la.org/ben-disc
Slides + Info: cs6la.bencuan.me

0000000
...........
0000000

Anhounhcements

= Hog due tonight!
= Midterm regrade requests due next Weds.

= General questions/concerns? Join advising OH
or email me!

Agenda

= Attendance
= Midterm debrief
= Recursion
o Recursion
m Recursion
e Recursion

o Recursion

_ DA IrciA N

About the
midterm

General thoughts

e Congrats on finishing a really tough exam!

e FEveryone learns CS at their own pace, don’t compare
yourself to others! enjoy the process)

e Low exam averages can be expected in most CS classes!
It's totally OK and expected to get a low score

v

285
225
180
2 165

= 300 points total, 135 of which are non-exam.

= (Points desired - 135 - 40 + MT1 score - 7 - exam
recovery pts) = points heeded for MT2 and Final

= Example: 15/40 on MT1, want a B+?
o 250-135-40+15-7-4="779
m 25/50 on MT2, 54/75 on Final = B+!

270
205
175
160

v

250
190
170

61A by the numbers &

C+
D+

v
v

o O W >
v

v

S

v Iv v IV

Some reassurances

e MT1is asmall part of 61A! Much more yet to come
e Many people do better in 61B by >=1grade bin!

e G6lA or CS grades in general are not super important for
life/career/research purposes

e CSMis hereto help?)

e Many past students (such as myself) find the final easier
than midterms since there is less time crunch

Recursion

What is this recursion thing?

Recursion is when a function calls itself

def factorial(n):

"nnReturn the factorial of N, a positive integer.""" def print_all(X):

if n == 1: 3
return 1 prlnt(x)

eloe return print_all
return n * factorial(n - 1)

This is recursion! This is NOT recursion (no call)!

Ways to conceptualize recursion

= HOF's? (discussed last slide)
= |teration? (they do the same thing)
= |Induction? (for math people)

= Recursion :) (google it!)

The 3 parts of a recursive function

1. Base Case (what's the simplest possible
INput?)

2. Recursive Case (how do we make the problem
even simpler?

3. Recursive Leap of Faith (assume simpler
problems are solved already)

def factorial(n):

"""Return the factorial of N, a positive integer."""

if n==1:

Example: Factorial

else:
return n * factorial(n - 1)

Goal: computen! = n * (n-1) * (n-2) .. * 1

1. Base Case: simplest input to n?
a. n == lorn ==

2. Recursive Case: smaller problem?
a. nl=n*(n-1)!

3. Leap of Faith: what do we assume?
a. that factorial(n-1) actually gives (n-1)!

A warning: arm’s length recursion

Recursive cases should be as simple as
possible!

n * factorial(n-1): good! :)

n *x (n-1) * factorial(n-2): not good :(

Q1: Recursive Multiplication

Goal: do multiplication recursively by adding a
bunch of times

Base Case: what's the simplest input?

Recursive Case: what does multiply(m-1, n) do?
What about multiply(n, m-1)? Does it matter?

e Hint: leap of faith

Q2: Recursive ED

def rec(x, y):
if y > 0:
return x * rec(x, y - 1)
return 1

rec(3, 2)
What does this function do?

How many frames are created?

Q3: Bug Finding

def skip_mul(n):
""tReturn the product of n * (n - 2) * (n - 4) * ...

>>> skip_mul(5) # 5 * 3 % 1
15
>>> skip_mul(8) # 8 * 6 * 4 x 2
384
if n ==
return 2
else:
return n * skip_mul(n - 2)

Hint: try some inputs. Which values of n break the function?

16

Q4: Recursive Hailstone

You've done it iteratively... now do it recursively!

Hints:
1. Are there any side effects from making the
recursive call?

2. How many base cases do you need? How
mMany recursive cases do you need?

Q5: Merge Numbers (hard mode)

Write a procedure merge(nl, n2) which takes numbers with digits in decreasing order and returns a single number
with all of the digits of the two, in decreasing order. Any number merged with 0 will be that number (treat 0 as
having no digits). Use recursion.

Hint: If you can figure out which number has the smallest digit out of both, then we know that the resulting
number will have that smallest digit, followed by the merge of the two numbers with the smallest digit
removed.

def merge(nl, n2):
""" Merges two numbers by digit in decreasing order
>>> merge(31, 42)

4321

>>> merge(21, 0)
21

>>> merge (21, 31)
3211

18

Is Prime

if B =
return False

k = 2

while k < n:
T NS k=0;

return False

K += 1

return True

You've done it iteratively... now do it recursively!

19

