What OOP users claim What actually h

-
-
.
. ee e - - on
. e sove .
e &b e at 4
s eeee o LU L L4
. - _see . 9% % v ov
- @8 S4 & 4 4 & Slasa
. * 4000 4% 0 % 90
- ® ode GoN4® @ o 4 Pa n

appens

Hi! Welcome to

61A Discussion :)

We will begin at 5:10!
Attendance: go.cs6la.org/ben-disc
Slides: ecs6la.bencuan.me

Anhounhcements

= Ants phase 1 & HW4 due tonight!

Agenda

= Attendance
= String __repr__esentation

@ Trees @@ @

String
Representation

String rep: what and why?

= Magic python functions __str__and __repr__to
convert objects into strings (text)

= Makes debugging a lot easier
= Compare contents of objects

str() vs repr()

|
str: repr.
= Human friendly = Machine friendly
(easy to read) (prioritize completeness
over readability)
= Called by str() and print() = Called by repr() or by

passing an object
straight into interpreter

Some very subtle differences

| <- calls repr once
h1

print(<- calls str, removes quotes

hi

] str(

'hi

| repr() <-adds an extra quote on top

 Sthif

>>> str(str(str(str(str('hi’))))) <- does not add quotes

Chi

>>> repr(repr(repr(repr(repr('hi’))))) <-each repr adds a new FNeJReISeIE=1
ERSNRL AR S S VRN R AR RN AR R AR VAR AR R VAR A = A AR R R AR

L >>>

(..uhh whattt????)

Let’s try some WWPD!

class A:
def __init__(self, x):
self.x = x
def __repr__(self):
return self.x
def __str__(self):
return self.x x 2

class B:

def __init__(self):
print('boo! ")
self.a = []

def add_a(self, a):
self.a.append(a)

def __repr__(self):
print(len(self.a))
ret = "'
for a in self.a:

ret += str(a)

return ret

Let’s try some WWPD!

>>> A('one')

>>> print(A('one'))

>>> repr(A('two'))

>>> b = B()

class A:
def __init__(self, x):
self.x = x
def __repr__(self):
return self.x
def __str__(self):
return self.x *x 2

class B:

def __init__(self):
print('boo!")
self.a = []

def add_a(self, a):
self.a.append(a)

def __repr__(self):
print(len(self.a))
ret = "'
for a in self.a:

ret += str(a)

return ret

Trees

What are trees?

= A recursively defined object
= Two instance attributes: label and branches
@ Branches = list of more Trees!
= Leaf: a tree with no branches

Q@
@%@

n

Label the tree!

@
The Tree Class @
® % ©®

Tree(label, branches): Creates a new Tree object (runs __init__)
t.label: The label in this tree’s node
t.branches: A list of Trees (child nodes)

t.is_leaf(): A function that returns True if t.branches is empty

IMPORTANT: Data Types!

Tree(label, branches)
e Llabel can be anything.
e branches must be a list of trees.
e Returns a Tree object.

t.label
e can be any type (usually a number)

t.branches
e must always be a list of trees (branches of t)

is_leaf(t)
e returns a boolean (True or False)

Autodraw demo

run autodraw() on code.cs6la.org to visualize trees!

§>>> autodraw()
i call disable_autodraw() to disable automatic visualization of lists.

§>>> Tree(1l, [Tree(2), Tree(3)])
ETree(l, [Tree(2), Tree(3)])

. ®
—= @%@@

def tree_stuff(t):

if t.is_leaf():
return __ (base case)

else:
result = [tree_stuff(b) for b in t.branches]
return (do something with the result)

Height (Q2)

Write a function that returns the height of a tree. Recall that the height of a tree is the
length of the longest path from the root to a leaf.

tree(label, branches)
label(t)

ORI
ranches(t
Is_leaf(t)
® % ®

base case?
what to do with result?

Q3: Maximum Path Sum

Write a function that takes in a tree and returns the maximum sum of the values along
any path in the tree. Recall that a path is from the tree's root to any leaf.

tree(label, branches)
label(t)

branches(t)
Is_leaf(t)

Q4: Find Path

Write a function that takes in a tree and a value x and returns a list containing the nodes along the path required to get from the root of the tree to a node containing x.
If x is not present in the tree, return None . Assume that the entries of the tree are unique.

For the following tree, find_path(t, 5) should return [2, 7, 6, 5]

Q4: Find Path

Write a function that takes in a tree and a value x and returns a list containing the nodes along the path required to get from the root of the tree to a node containing x.
If x is not present in the tree, return None . Assume that the entries of the tree are unique.

For the following tree, find_path(t, 5) should return [2, 7, 6, 5]

def find_path(t,x):

if
return

for
path =

if
return

20

Q5: Prune Small

Complete the function prune_small that takes in a Tree t and a number n and prunes t mutatively. If t or any of its
branches has more than n branches, the n branches with the smallest labels should be kept and any other branches

should be pruned, or removed, from the tree.

mutate, no need to use returns anywhere!
e remember list mutation functions (pop, append, remove...)

21

Q5: Prune Small

Complete the function prune_small that takes in a Tree t and a number n and prunes t mutatively. If t or any of its
branches has more than n branches, the n branches with the smallest labels should be kept and any other branches

should be pruned, or removed, from the tree.

mutate, no need to use returns anywhere!
e remember list mutation functions (pop, append, remove...)

def prune_small(t, n):

while
largest = max(, key=lambda b: b.label)

for

