
Welcome to 
61A Lab!

We will begin at 5:10!
Slides: cs61a.bencuan.me



Announcements

▣ Scheme week!!!

▣ Magic: The Lambdaing due Fri. for extra credit

2



The Plan

▣ Basic Scheme Syntax

□ Assignment

□ Functions and Procedures

□ Control (if, cond)

3



Scheme



Stop and do this now!!

5

▣ If you use VSCode, install the extensions 
vscode-scheme and Bracket Pair Colorizer

▣ This will make your life 1000x nicer when 
writing scheme code!!



“Why are we doing scheme?? it sucks”

▣ Show you that 61A concepts carry over to most 
other programming languages

▣ Makes you so much better at recursion problems

▣ Can make an interpreter for it in 2 weeks (proj4)

▣ Hopefully will appreciate later, it’s fine if you don’t 
like it now 



Scheme, Generalized

▣ Only recursion, no iteration

▣ Everything, including operators, go inside 
parentheses!

□ f(x, y) in python becomes (f x y) in scheme

▣ Everything is a (linked) list

□ We will talk about this more in discussion



Scheme Resources

▣ go.cs61a.org/ben-scheme

▣ Scheme Specification: 
https://cs61a.org/articles/scheme-spec/

▣ Built-In Procedures: 
https://cs61a.org/articles/scheme-builtins/

https://go.cs61a.org/ben-scheme
https://cs61a.org/articles/scheme-spec/
https://cs61a.org/articles/scheme-builtins/


Variables



Booleans part 1



Booleans part 2



Functions/Procedures



If and Cond



Begin and Let*

*not on today’s lab



Lab Hints

▣ Parentheses in Scheme go before the operator, and 
no commas!!!

□ (operator x y z …) NOT operator(x, y, z…)

▣ Write solutions out in Python, then convert to 
Scheme

▣ “return a procedure” ⇒ make a lambda

▣ The blue hint boxes are very helpful

▣ In Scheme, the last expression in a define is 
automatically returned

15


