
Welcome to 
61A Lab!

We will begin at 5:10!
Slides: cs61a.bencuan.me



Announcements

▣ HW6 due Thursday

2



The Plan

▣ Interpreters!

▣ Lab 11 Walkthrough

□ This lab is kind of hard ngl

3



Interpreters



The Calculator Example

▣ Goal: let’s write an interpreter that understands 
simple math expressions!
□ (+ 2 2)

□ (- 5)

□ (* (+ 1 2) (+ 2 3))

▣ Understands +, -, *, /, and nested expressions



Pairs

▣ Pairs are literally linked lists!! Main differences:

□ Pair vs Link

□ nil vs Link.empty

□ Pair(1, nil) vs Link(1)

▣ Used to represent Scheme code in Python



Operators and Operands

▣ An operator is the function you are trying to apply 
in Scheme
□ +, list, append…

□ The very first element in a Pair list

▣ An operand is a parameter that is passed into the 
function
□ In (+ 3 5), + is the operator and 3, 5 are both operands



Eval and Apply

▣ Eval rules:

□ Basic elements (numbers, booleans…) - done (base case)

□ Built-in functions (+, -, …) - lookup in OPERATORS

□ Function:

■ Call eval on operator

■ Recursively call eval on all operands

■ Call apply on operator and operands



Example



Lab Walkthrough



Today’s Task, summarized

▣ Create the first part of the Scheme project!

▣ Part 1: Lexical Analysis (buffer.py)

□ Break down a long string into tokens

▣ Part 2: Syntactic Analysis (scheme_reader.py)

□ Evaluate tokens into final result



The Buffer Class

▣ A way to access tokens one at a time

▣ current: the next token

▣ pop_first(): removes next token from list, then returns it

▣ end_of_line(): returns true if current token is EOL_TOKEN

▣ If nothing left in buffer, pop_first() and current are None



Editing the Buffer Class (Problem 1)

▣ create_generator():

□ yields one token at a time from source iterator

▣ __init__():

□ Create a new generator (create_generator)

□ Initialize current token

▣ pop_first():

□ Use generator made in __init__

□ Reassign self.current and return the old one



Scheme Read (Problem 2)

▣ Goal: convert Buffer of tokens into a Python representation

□ Mutual recursion: scheme_read calls read_tail, which 
calls scheme_read, which calls read_tail…

▣ Base case: returns a single token (like 5 or nil)

▣ Recursive case: pass src into read_tail



Read Tail (Problem 2)

▣ Goal: Read the rest of a valid Scheme expression

□ Example inputs: ), + 2 3), 

□ These inputs are not valid: (+ 1 2), nil

▣ Base case: return nil if at a closing parentheses )

▣ Recursive case: 

□ scheme_read first

□ read_tail rest

□ return a pair of first and rest



Read Quotes (Problem 3)

▣ Goal: Add handling of inputs like 
(quote (+ 1 2)) or ‘(+ 1 2)

▣ Modify scheme_read to add a new quote case

□ If quote detected, create a Pair containing the literal 
quote char and a nested Pair containing the rest



Lab Hints

17



Work Time!

19

go.cs61a.org/ben-queue

http://go.cs61a.org/ben-queue

