Welcome to
61A Lab!

We will begin at 5:10!
Slides: cs6la.bencuan.me

Anhounhcements

HWG6 due Thursday

The Plan

Interpreters!
Lab 11 Walkthrough
This lab is kind of hard ngl

Interpreters

The Calculator Example

Goal: let's write an interpreter that understands
simple math expressions!

(+22)
(- 5)
(" (+12) (+23))
Understands +, -, *, /, and nested expressions

Pairs

Pairs are literally linked lists!! Main differences:
Pair vs Link
nil vs Link.empty
Pair(1, nil) vs Link(1)

Used to represent Scheme code in Python

Operators and Operands

An operator is the function you are trying to apply
IN Scheme

+, list, append...

The very first element in a Pair list

An operand is a parameter that is passed into the
function

In (+ 35), +is the operator and 3, 5 are both operands

Eval and Apply

Eval rules:
Basic elements (hnumbers, booleans...) - done (base case)
Built-in functions (+, -, ...) - lookup in OPERATORS
Function:
Call eval on operator
Recursively call eval on all operands

Call apply on operator and operands

(+2 (-34))

Example > [fead
%
Pa:f(‘&’, Pm‘/(’t, ceeee ht'l))))
]
I Eval
b opuwetar: +
b opevands’ 2, ‘(,‘ 3 ‘1)
..v:l
[N ofm\tof -

b opacands 3,

ADRY
E %H)*E]

ﬁpp)
(_42. 'D > A4 4_./]
i___ Pr.n4

"B

Lab Walkthrough

Today’s Task, summarized

Create the first part of the Scheme project!

Part 1: Lexical Analysis (buffer.py)
Break down a long string into tokens
Part 2: Syntactic Analysis (scheme_reader.py)

Evaluate tokens into final result

The Buffer Class

A way to access tokens one at a time

current: the next token

pop_first(): removes next token from list, then returns it
end_of_line(): returns true if current token is EOL_TOKEN

If nothing left in buffer, pop_first() and current are None

Editing the Buffer Class (Problem 1)

create_generator():
yields one token at a time from source iterator
iNnit__():

Create a new generator (create_generator)
Initialize current token

pop_first():
Use generator made in _init__

Reassign self.current and return the old one

Scheme Read (Problem 2)

Goal: convert Buffer of tokens into a Python representation

Mutual recursion: scheme_read calls read_tail, which
calls scheme_read, which calls read_tail...

Base case: returns a single token (like 5 or nil)

Recursive case: pass src into read_tail

Read Tail (Problem 2)

Goal: Read the rest of a valid Scheme expression

Example inputs:), + 2 3),

These inputs are notvalid: (+ 1 2), nil
Base case: return nil if at a closing parentheses)
Recursive case:

scheme_read first

read_tail rest

return a pair of first and rest

Read Quotes (Problem 3)

Goal: Add handling of inputs like
(quote (+ 1 2)) or ‘(+ 1 2)

Modify scheme_read to add a new quote case

If quote detected, create a Pair containing the literal
quote char and a nested Pair containing the rest

Lab Hints

17

Work Time!

o.cs6la.org/ben-gueue

......
........
hdaahd ok ST + hlld 4

http://go.cs61a.org/ben-queue

