Welcome to 61A Lab!

We will begin at **5:10**! Slides: **cs61a.bencuan.me**

Announcements

- This is the last lab :')
 - Final discussion this Thursday!
 - Topical review sessions next week
- HW8 due Thursday
- Scheme due tonight
- Scheme art contest due tomorrow

The Plan

- Final overview
- Ask us anything!
- Exam problem walkthrough
- Requested topics

Final Info

Logistics

- not out yet see piazza!!
- will be on Tuesday 5/10 from 11:30-2:30
- 75 course points with typical average of ~45-50
- same policies and format as midterms
 - 3 two-sided cheat sheets
- hopefully less time crunchy than midterms

Stuff to study

- All pre-MT2 content (large portion of final)
 - Control, higher order functions, lambdas
 - Tree recursion
 - Trees
 - OOP, inheritance
 - Linked lists
 - Iterators (and generators less emphasized)
 - Efficiency (less emphasized)
 - String representation (less emphasized)

Stuff to study pt. 2

- Post MT2 content
 - Interpreters: eval/apply mutual recursion, lexical vs syntactic analysis, Scheme project design
 - Scheme: basic syntax, lists, data abstraction, programs as data
 - Regex: basic expressions using re.search()
 - BNF: read and write basic grammar, read and draw syntax trees based on input

Refer to piazza for exact scope!

Useful Resources

Also posted on cs61a.bencuan.me!

Ben's midterm studying strategy guide: https://cs61a.bencuan.me/Midterm-Tips-sp22-858964ddc43343cea52f6afbb2af05cf

Tanay's list of useful midterms and problems: https://sparkling-swamp-b74.notion.site/CS-61A-Resource-Guide-6c4b98c5308942 4f9554fff9b1107698

CSM study materials: <u>https://docs.google.com/document/d/145kJIPtrbu410SYVhyznOV19gPCm5EOZ6Xb</u> <u>tReOk33o/edit</u>

Tips from the Al's

- Thoroughly look over solutions for MT1 and MT2 to identify how/why you went wrong so you don't make those same mistakes on the final
- Get lots of sleep + take care of yourself! It's okay to stop studying when you feel ready, you don't have to keep going because everyone else seems to be

Lab

Hints available upon request, but try to get as far as you can on your own!

Good optional problems to start with:

- Q6 (mutability, trees, tree recursion)
- Q13 (difficult linked lists problem)

(b) (6.0 points)

The join procedure takes two lists of lists s and t. It returns a list of lists that has one element for each possible pairing of an element of s with an element of t. Each element of the result is a list that has all the elements of a list from s followed by all the elements of a list from t.

For example: scm> (define instructors '((john 61a) ●.(hany 61a) (josh 61b))) instructors scm> (define grades '((Lar 5) • (a b) ●(c d))) grades quete scm> (ctors grate. (hany 61a a b) (hany 61a c d) (josh 61b a b) (josh 61b c d)) d) (john 61a tons 13 MAD Implement join. element in t lin Filter (define (join s t) appund 1-Adre (if (null? s) nil list > append (Map (lambda (v)) oppend ((or 5) of lists (cjohn Wa cd). list (join ((dr s) t))) (- (eureice 1Crun ist of lists

(((juhn bio a b) for list in -b! (john bia c d)) result append (((s.first, -t)) joured)) (....

((____)(____))