
Welcome to 
61A Lab!

We will begin at 5:10!
Slides: cs61a.bencuan.me



Announcements

▣ Cats released!

□ Checkpoint Thurs, whole proj. next Thurs

▣ HW3 due Thurs.

▣ Regrade requests due tomorrow!

▣ CSM sections still open!

2



The Plan

▣ Recursion review

▣ Tree recursion

▣ Work time!

□ HW and project problems accepted

3



Recursion Review



What is recursion?

5

Recursion is when a function calls itself

Remember to call the function!!

This is NOT recursion (no call)!



The 3 parts of a recursive function

6

1. Base Case (what’s the simplest possible 
input?)

2. Recursive Case (how do we make the problem 
even simpler?

3. Recursive Leap of Faith (assume simpler 
problems are solved already)



A basic recursion skeleton

7



Tree Recursion



What is tree recursion?

9

▣ Definition: making multiple recursive calls at 
one time

□ Can be very challenging in practice!



What is tree recursion?

10



When use tree recursion?

11

▣ When you need to try lots of possible 
combinations that rely on previous states

□ Fibonacci

□ Count coins

□ Coming soon(?): data structures (trees, heaps, 
graphs… and some sorting too …)



Partitions

12

▣ A very common tree recursion pattern:

□ You’re given two (or more) options

□ You need to combine the two options together

▣ Example: Line Stepper (lab q2)

□ Option 1: try going left

□ Option 2: try going right

□ Combine: add total count of two options



Lab Hints



Lab Hints

▣ Before you begin coding, figure out what the base 
case and recursive cases are!

▣ Recursive calls should ALWAYS move towards the 
base case

▣ Tree recursion: draw out the branching call 
structure

▣ Partition problems: ask yourself what possible 
moves you can make

14



Work Time!

16

go.cs61a.org/ben-queue

Want a lab partner/group? 
Come to the front!

http://go.cs61a.org/ben-queue

